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OBJECTIVES To identify whether machine learning from processing of continuous wave transforms (CWTs) to provide

an “energy waveform” electrocardiogram (ewECG) could be integrated with echocardiographic assessment of subclinical

systolic and diastolic left ventricular dysfunction (LVD).

BACKGROUND Asymptomatic LVD has management implications, but routine echocardiography is not undertaken in

subjects at risk of heart failure. Signal processing of the surface ECG with the use of CWT can identify abnormal

myocardial relaxation.

METHODS EwECG and echocardiography were undertaken in 398 participants at risk of heart failure (HF). Reduced

global longitudinal strain (GLS #16%)), diastolic abnormalities (E/e0 >15, left atrial enlargement with E/e0 >10 or

impaired relaxation) or LV hypertrophy defined LVD. EwECG feature selection and supervised machine-learning by

random forest (RF) classifier was undertaken with 643 CWT-derived features and the Atherosclerosis Risk in Communities

(ARIC) heart failure risk score.

RESULTS The ARIC score and 18 CWT features were selected to build a RF predictive model for LVD in a training dataset

(n ¼ 287; 60% female, median age 71 [interquartile range: 68 to 74] years). Model performance was tested in an in-

dependent group (n ¼ 111; 49% female, median age 61 years [59 to 66 years]), demonstrating 85% sensitivity and 72%

specificity (area under the receiver-operating characteristic curve [AUC]: 0.83; 95% confidence interval [CI]: 0.74 to

0.92). With ARIC score removed, sensitivity was 88% and specificity, 70% (AUC: 0.78; 95% CI: 0.70 to 0.86). RF models

for reduced GLS and diastolic abnormalities including similar features had sensitivities that were unsuitable for screening.

Conventional candidates for LVD screening (ARIC score, N-terminal pro–B-type natriuretic peptide, and standard auto-

mated ECG analysis) had inferior discriminative ability. Integration of ewECG in screening of people at risk of HF would

reduce need for echocardiography by 45% while missing 12% of LVD cases.

CONCLUSIONS Machine learning applied to ewECG is a sensitive screening test for LVD, and its integration into

screening of patients at risk for HF would reduce the number of echocardiograms by almost one-half.
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T he echocardiographic recognition of
structural and functional cardiac ab-
normalities among patients with risk

factors for heart failure (HF) identifies
asymptomatic left ventricular dysfunction
(LVD) and thereby guides therapy (1).
Despite this, routine echocardiography is
rarely performed in people with HF risk fac-
tors, other than in coronary artery disease
(CAD) (2). No viable screening test has
evolved to better direct selection for
echocardiography.

Standard 12-lead electrocardiography
(ECG) is a potential initial investigation in
people with HF risk factors. A range of ECG
abnormalities, e.g., arrhythmias, conduction
disturbances, and voltage patterns, may
relate to underlying LVD. The potential for a
form of signal processing, known as contin-
uous wavelet transform (CWT), to reveal
abnormalities in a standard ECG signal has been
recognized for more than 20 years (3,4). However,
only recently have patterns in CWT-processed ECG
signals, or “energy waveform” ECG (ewECG), been
demonstrated to predict functional LV abnormalities,
specifically abnormal relaxation (5,6). Recording an
ewECG requires no additional time or expertise and
simultaneously displays a standard 12-lead ECG trace,
making it a feasible test for use in the community.
However, although there is an association between
repolarization measures and abnormal myocardial
relaxation (7), whether prior findings in populations
presenting for echocardiography (6) extend to the
detection of asymptomatic systolic LVD in commu-
nity populations at risk for HF is unknown. Indeed,
the most appropriate use of this technology would be
to guide definitive echocardiographic assessment as
part of a screening process. We hypothesized that
machine-learning algorithms applied to ewECG data
could identify LVD in a community population at risk
of HF and that depolarization and repolarization CWT
features were associated with systolic and diastolic
dysfunction (DD), respectively.

METHODS

STUDY PARTICIPANTS. Participants were recruited
from the community as part of the ongoing Victorian
Study of Echocardiographic Detection of Left
s attest they are in compliance with human studies committe

and Food and Drug Administration guidelines, including patien

thor Center.

received December 9, 2020; revised manuscript received March
Ventricular Dysfunction (Vic-ELF; ACTRN
12617000116325) in Melbourne, Australia. Participants
were aged $65 years with at least one of the
following HF risk factors: obesity (body mass
index $30 kg/m2), type 2 diabetes mellitus, or hy-
pertension (systolic blood pressure $140 mm Hg or on
medication). Exclusion criteria included LV ejection
fraction #40%, known symptomatic HF (or diagnosed
at baseline screening), known CAD (excluded because
of the routine use of echocardiographic assessment in
this group), moderate or greater valvular heart dis-
ease, renal impairment, and symptoms of HF.

The testing dataset comprised an analogous group
of 111 prospectively recruited asymptomatic people
without established cardiovascular disease, with the
same inclusion and exclusion criteria, in Canberra,
Australia (Australian National University Medical
School; n ¼ 79), and in the USA (Icahn School of
Medicine, New York, New York, and University of
West Virginia, Morgantown, West Virginia; n ¼ 32).
This geographic heterogeneity aimed to test model
generalizability. The relevant institutional review
boards approved the study, and each participant gave
written informed consent.

CLINICAL MEASURES. Baseline measures and pro-
cedures pertinent to this substudy included body
mass index, resting averaged systolic blood pressure
(SBP) and diastolic blood pressure (DBP), heart rate,
documentation of cardiovascular risk factors,
comorbidities, and medications. Clinical data were
used to calculate the 4-year risk of incident symp-
tomatic HF with the use of the Atherosclerosis Risk in
Communities (ARIC) HF risk score, which has
demonstrated utility in risk stratification in subclini-
cal HF (8). Biochemical markers of renal function and
N-terminal pro–B-type natriuretic peptide (NT-
proBNP) were also measured.

STANDARD ECG AND ewECG. After standard ECG
lead placement, subjects underwent ewECG evalua-
tion with the use of a device that is CE marked
but not approved for use in the USA (MyoVista
version 2.0; HeartSciences, Southlake, Texas). The
MyoVista ewECG interface displays a standard 12-
lead ECG trace as well as an automated diagnostic
interpretation based on the University of Glasgow
12-lead ECG interpretive analysis algorithm,
which provides both quantitative parameters and
qualitative interpretations (9,10). The ECG signal is
es and animal welfare regulations of the authors’
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FIGURE 1 Conventional ECG Traces and Corresponding ewECG Scalograms After Signal Processing Using CWT
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(A) Normal ewECG, as determined by MyoVista proprietary software and our machine-learning algorithm. Echocardiogram was normal. (B) Predicted

abnormal by our machine-learning algorithm. Participant had abnormal systolic function (GLS 15%). Of potential significance is the lower energy asso-

ciated with the QRS. (C) Predicted abnormal by our machine-learning algorithm. Participant had diastolic dysfunction. Note low energy associated with the

T-wave. CWT ¼ continuous wave transform; ECG ¼ electrocardiography; ewECG ¼ energy waveform ECG; GLS ¼ global longitudinal strain.

J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . - , N O . - , 2 0 2 1 Potter et al.
- 2 0 2 1 :- –- ECG Machine Learning and LV Dysfunction

3

deconstructed and presented graphically in an energy
scalogram (red [high energy] to blue [low energy])
depicting an energy distribution by time (x-axis) and
frequency (y-axis) (the “energy waveform”) (Figure 1).
As described previously (5), energy is expressed as
coefficients reflecting agreement betweenwavelet and
signal at varying scales, rather than a discrete energy
measurement (11). A total of 643 CWT features (en-
ergies, frequencies and ratios) at defined points in the
cardiac cycle are generated by proprietary software
throughout the cardiac cycle. As our prior work
demonstrated the existing automated interpretative
algorithms to be insufficiently sensitive to detect LVD
(12), we used the complete CWT output.
ECHOCARDIOGRAPHY. On the same day as ewECG, a
transthoracic 2-dimensional and Doppler echocar-
diographic study was performed with the use of
standard equipment (ACUSON SC2000; Siemens
Healthcare USA, Mountain View, California) and
transducer (4V1c, 1.25 to 4.5 MHz; 4Z1c, 1.5 to 3.5
MHz) in accordance with American Society of Echo-
cardiography guidelines. LV systolic function was
assessed by global longitudinal strain (GLS) computed
with the use of speckle tracking (Syngo VVI; Siemens
Healthcare USA). GLS was the average of regional
strains in the apical 2-chamber, 4-chamber and long-
axis views. Diastolic function was assessed by
measuring mitral inflow peak early diastolic velocity
(E), peak late diastolic velocity (A), E/A ratio, septal
and lateral mitral annular early diastolic velocities
(e0), and the E/e0 ratio. Left atrial volume index (LAVi)
was calculated from maximal LA volume with the use
of biplane images and indexed to body surface area;
LA enlargement was defined as LAVi >34 ml/m2. Left
ventricular hypertrophy (LVH) was defined as LV
mass index >95 g/m2 in women and >115 g/m2 in men.



TABLE 1 Baseline Characteristics by Subclinical Heart Failure Stage

Stage A HF
(n ¼ 227)

LV Dysfunction
(n ¼ 171) p Value

Clinical and biomarkers

Age, yrs 68 (62–71) 71 (68–75) <0.001

Sex 137 (60) 90 (40) 0.08

Hypertension 185 (82) 152 (90) 0.04

Type 2 diabetes mellitus 41 (18) 60 (35) <0.001

Atrial fibrillation 9 (4) 13 (8) 0.12

Systolic BP, mm Hg 138 � 15 142 � 15 0.01

Diastolic BP, mm Hg 82 � 9 83 � 11 0.13

Heart rate, beats/min 63 � 9 66 � 10 0.002

BMI, g/m2 31 � 5 32 � 6 0.09

ACE-I/ARB* 118 (75) 118 (73) 0.64

Beta-blockers* 17 (11) 25 (15) 0.22

NT-proBNP,† pg/ml 51 (30–94) 59 (33–101) 0.39

ARIC HF risk score 3.6 (1.22–6.60) 7.1 (3.80–12.90) <0.001

Standard ECG abnormalities

Atrial fibrillation 1 (0.4) 4 (2.3) 0.09

LBBB 0 (0.0) 3 (1.6) 0.05

LV hypertrophy 7 (3) 10 (6) 0.18

Abnormal ECG (per Glasgow analysis) 35 (15) 62 (36) <0.001

Echocardiographic measures

LV mass index, g/m2 67 � 16 71 � 22 0.01

LV ejection fraction, % 64 � 6 61 � 7 <0.001

Global longitudinal strain, % 20 (18.9–21.0) 17 (15.4–18.6) <0.001

E/A ratio 0.95 � 0.28 0.80 � 0.24 <0.001

Average e0, cm/s 8.1 � 1.7 7.1 � 1.9 <0.001

Average E/e0 8.3 (7.2–9.8) 9.3 (7.3–11.7) 0.003

LAVI, ml/m2 30 (25–34) 37 (29–42) <0.001

Values are median (interquartile range), n (%), or mean � SD. *Not available in the Canberra group. †Available
only in the training dataset.

ACE-I/ARB ¼ angiotensin converting enzyme inhibitor/receptor blocker; ARIC ¼ Atherosclerosis Risk In Com-
munities; BMI ¼ body mass index; BP ¼ blood pressure; ECG ¼ electrocardiography; HF ¼ heart failure;
LAVI ¼ left atrial volume indexed to body surface area; LBBB ¼ left bundle branch block; LV ¼ left ventricular;
NT-proBNP ¼ N-terminal pro–B-type natriuretic peptide.
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LVD was defined by either: 1) abnormal structure
(LVH); 2) abnormal GLS #16% or borderline GLS (17%–

18%) with impaired relaxation or left atrial enlarge-
ment (LAE); or iii) diastolic dysfunction (E/e0 >15 or
E/e0 >10 with LAE or impaired relaxation with LAE).

We developed predictive models for: 1) LVD’ 2)
systolic dysfunction (GLS #16%); and 3) diastolic
dysfunction.

MACHINE-LEARNING CLASSIFICATION MODEL.

A supervised machine-learning approach was used to
predict LVD status. We used the random forest (RF)
classifier algorithm in the module Scikit-learn (Py-
thon Software Foundation, https://www.python.org)
(13). All hyperparameters for the algorithm were
entered according to the library’s documentation and
are summarized in Supplemental Table 5. Given the
high dimensionality of the data, including the fact
that ewECG features were more numerous than sub-
jects, we undertook a process of feature selection to
identify those features with the most predictive in-
formation relevant to LVD (Supplemental Figure 1).
All CWT features plus the ARIC HF risk score were
offered in feature selection. The ARIC score was
included to evaluate the importance of this easily
attainable clinical variable against ewECG.

The feature selection approach evaluated the per-
formance of all individual features (N), using area
under the receiver-operating characteristic curve
(AUC), and selected the best performing in the first
round. Then, each of the remaining (N � 1) features
was paired with the selected one to identify the pair
that gave the best performance. This process was
repeated until all features were selected and the
combination of features that provided the best per-
formance was ascertained. Other approaches were
tested but were less successful (Supplemental
Table 1). We also evaluated feature importance,
extracted from the RF output (which uses Gini
importance). This indicates the contribution made by
each feature to the model’s predictive performance.
Practically, higher importance means that the
decision-making error associated with a feature in the
nodes across all decision trees in the forest is less
than using other features in other nodes.

A 5-fold cross validation on the training dataset
was used to internally validate model performance
with subsequent external validation on the separate/
test dataset. The output of the RF model is a contin-
uous probability score with a threshold of 50% for
dichotomizing predicted outcome, e.g., LVD versus
no LVD. When evaluating the performance on the
external dataset, modification of this probability
threshold was investigated to see if performances
could be optimized. Unless otherwise stated, the 50%
threshold was found to be optimal.

STATISTICAL ANALYSIS. Continuous data are pre-
sented as mean � SD or median and interquartile
range (IQR) depending on distribution after visual
assessment. Between group differences for categoric
data were tested with the use of Pearson’s chi-square,
and for continuous variables the independent t test or
Wilcoxon rank-sum test was used depending on
normality of distribution. Because the most impor-
tant characteristic of a screening test is high sensi-
tivity, cutoff points were selected with the minimal
number of false positives at a sensitivity closest to
90%. Discriminatory performance predictive models
were assessed with the use of AUCs. To evaluate the
incremental utility of the machine-learning models
compared with the ARIC HF risk score as a base
model, continuous net reclassification improvement
(cNRI) and integrated discrimination improvement

https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020


TABLE 2 Baseline and Outcome Characteristics by Training Versus Test Dataset

Training (n ¼ 287) Test (n ¼ 111) p Value

Clinical

Age, yrs 71 (68–74) 61 (59–66) <0.001

Sex 171 (60) 54 (49) 0.05

Hypertension 252 (88) 85 (77) 0.005

Type 2 diabetes mellitus 92 (32) 9 (8) <0.001

Systolic BP, mm Hg 142 � 14 134 � 16 <0.001

Diastolic BP, mm Hg 84 � 9 79 � 10 <0.001

Heart rate, beats/min 65 � 9 64 � 10 0.48

BMI, g/m2 32 � 6 31 � 5 0.23

ARIC HF risk score 6.3 (3.8–10.6) 1.2 (0.8–2.6) <0.001

Standard ECG abnormalities

Atrial fibrillation 5 (1.7) 0 (0.0) 0.16

LBBB 3 (1) 0 (0.0) 0.28

LV hypertrophy 15 (5.0) 2 (1.8) 0.13

Abnormal ECG (per Glasgow analysis) 81 (28) 16 (14) 0.004

Echocardiographic measures

LV mass index, g/m2 68 � 20 69 � 17 0.53

LV hypertrophy 17 (6) 4 (4) 0.35

LV ejection fraction, % 63 � 7 62 � 5 0.65

GLS, % 19 (17–20) 20 (18–21) <0.001

GLS #16% 54 (19) 7 (6) 0.002

E/A ratio 0.83 � 0.22 1.03 � 0.33 <0.001

Average e0, cm/s 7.8 � 1.9 7.4 � 1.7 0.03

Average E/e0 8 (7–10) 9 (8–11) 0.001

LAVI, ml/m2 35 (30–41) 25 (22–31) <0.001

Diastolic abnormality 77 (27) 14 (13) 0.002

LV dysfunction 146 (51) 25 (23) <0.001

Values are median (interquartile range), n (%), or mean � SD.

GLS ¼ global longitudinal strain; other abbreviations as in Table 1.
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(IDI) were calculated. cNRI measures improvements
in probabilities within events (i.e., increased proba-
bility) and nonevents (i.e., decreased probabilities),
with the addition of, in this case, the machine-
learning models (14). IDI reflects the difference in
discrimination slopes (probabilities for events minus
nonevents) between 2 models and is reported herein
as the absolute IDI (15). For all analyses, statistical
significance was defined as a 2-tailed p value < 0.05.
Analyses were conducted with the use of Stata 15.1
(StataCorp, College Station, Texas).

RESULTS

PARTICIPANTS. Overall we included 398 participants
(57% female, median age 69 (IQR 66–73) years), and of
these, 171 (43%) had LVD. Baseline characteristics by
HF stage are presented in Table 1. Compared with
people with only risk factors, LVD was associated
with older age, a higher proportion of hypertension,
type 2 diabetes, increased heart rate and SBP, and
higher ARIC HF risk score. The proportions of
abnormal Glasgow ECG analysis summaries were 15%
and 36% for people with risk factors and LVD,
respectively (p < 0.001). All echocardiographic mea-
sures differed significantly between HF stages.

PREDICTION OF LVD BY CONVENTIONAL METHODS.

The ARIC HF risk score had an AUC of 0.72 (95% CI:
0.67 to 0.77) for LVD discrimination. An optimized
cutoff point for sensitivity was identified as an ARIC
HF risk score of 2.6, providing 90% sensitivity and
40% specificity. Similarly, the AUC for NT-proBNP
was 0.53, with an optimized cutoff of 21 pg/ml
providing a sensitivity of 88% and specificity of 14%.
Finally, an abnormal ECG by Glasgow analysis had a
sensitivity of 36% and a specificity of 85%. In those
with available NT-proBNP, adding NT-proBNP to the
ARIC HF risk score (AUC 0.65 [95% CI: 0.59 to 0.71])
did not significantly improve discriminatory ability
versus ARIC alone (AUC 0.63 [95% CI: 0.56 to 0.69];
p ¼ 0.18). Furthermore, the addition of both NT-
proBNP and abnormal ECG by Glasgow analysis did
not significantly improve discriminatory ability (AUC
0.67 [95% CI: 0.61 to 0.74]; p ¼ 0.06) (Supplemental
Figure 2).

PREDICTION OF LVD BY RF CLASSIFIER USING

ewECG. Of the 398 subjects, 287 (72%) were used to
train the RF prediction model and 111 (28%) were used
to test model performance. Compared with the
training dataset, subjects in the test dataset were
significantly younger and there were lower pro-
portions of women and participants with hyperten-
sion and diabetes. Furthermore, SBP, DBP, and ARIC
HF risk were significantly lower. The prevalence of
the LVD composite was 23% in the test dataset
compared with 51% in the training dataset
(p < 0.001), and a similar pattern was observed for
abnormal GLS and diastolic abnormalities (Table 2).

The ARIC HF risk score was selected during feature
selection along with 18 CWT features to train an RF
model (Table 3). At a probability threshold of 0.51
(optimized for sensitivity), the sensitivity and speci-
ficity of the model for prediction of LVD on the test
dataset were 85% and 72%, respectively (AUC: 0.83
[95% CI: 0.74 to 0.92]) (Table 4). With ARIC removed
from the model, the optimized sensitivity and speci-
ficity for detection of LVD were 88% and 70%,
respectively (AUC: 0.78 [95% CI: 0.67 to 0.88];
p ¼ 0.32 for difference between models) (Table 3 and
Figure 2). For a prevalence of 43%, this corresponded
to a negative predictive value of 89% (95% CI: 78% to
95%) and positive predictive value of 69% (95% CI:
60% to 77%).

Incremental improvements in prediction were seen
for both RF models compared with the ARIC HF risk
score alone, as assessed by cNRI and IDI. For the RF

https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020


TABLE 3 Model Features and Relative Importance (as a Proportion of 1) for Predicting LV Dysfunction

CWT Feature Description ECG Lead(s) Variable Importance

Repolarization late measure (RV) below specified threshold 0.01

Repolarization early measure (RV) below specified threshold 0.01

Repolarization late measure ratio exceeded for RV/LV 0.002

Sum of Depolarization measures from Q, R, and S waves divided by heart rate aVF 0.1

Early repolarization is too low (below specified threshold) V5 0.098

Frequency during minimum energy in early repolarization V5, V6 0.056, 0.055

Minimum energy at peak repolarization II 0.095

Frequency during maximum energy in early repolarization V6 0.09

Frequency during minimum energy in late repolarization V4, II 0.051, 0.065

Frequency during Repolarization late measure I, aVF 0.086, 0.092

Polarity of R wave aVR 0.012

Power spectrum (harmonic) amplitude of the first 4 harmonic peaks is too low II, V1 0.008, 0.01

Power spectrum (harmonic) amplitudes of the first 4 peaks is too high II, III, V4, aVR 0.005, 0.006, 0.005, 0.003

Power spectrum (harmonic) 4th peak amplitude is greater than the 3rd peak aVF, V5 0.018, 0.015

Power spectrum (harmonic) 5th peak amplitude is greater than the 1st peak II, III, V1, V3 0.013, 0.014, 0.017, 0.013

Power spectrum (harmonic) 5th peak amplitude is greater than the 3rd peak V4, V6 0.011, 0.009

Power spectrum (harmonic) 1st peak amplitude is too low V2, V3 0.007, 0.012

Power spectrum (harmonic) 3rd peak amplitude is too low I, aVL 0.011, 0.015

CWT ¼ continuous wave transform; ECG ¼ electrocardiogram; LV ¼ left ventricular; RV ¼ right ventricular.
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model incorporating ARIC, cNRI was 0.79 (95% CI:
0.23 to 1.17) and IDI 0.09 (95% CI: 0.012 to 0.24). For
the model incorporating only ewECG features, cNRI
was 0.94 (95% CI: 0.46 to 1.29) and IDI 0.11 (95% CI:
0.017 to 0.255).

The RF classifiers were inspected to reveal their
node features. For the LVD predictive model, features
were temporally associated with both depolarization
and repolarization and included several features
derived from the energy/power spectrum, that is,
certain ratios of harmonics within the power spec-
trum throughout cardiac cycles (Table 3).

PREDICTION OF LOW GLS BY ewECG USING THE RF

CLASSIFIER. When the features from the predictive
model for LVD were used to train a predictive model
for low GLS (#16%), this was not able to identify any
cases of low GLS (Supplemental Table 2). After
repeating feature selection, 16 features were found
to confer peak predictive power (Supplemental Ta-
ble 3), and performance on the test dataset showed a
sensitivity of 57% and a specificity of 90% (Table 4).
However, the proportion with low GLS in the test
dataset (6%) was significantly lower than in the
training dataset (19%; p ¼ 0.002), which is of sig-
nificance in interpreting model performance. The
CWT features selected for the low GLS model were
predominantly power spectrum and repolarization
features (ARIC HF risk score was not selected). Nine
out of the 16 features were chosen for the LVD
model.
PREDICTION OF DIASTOLIC ABNORMALITIES BY

ewECG USING THE RF CLASSIFIER. Overall, 91 sub-
jects (23%) exhibited diastolic abnormalities, with a
significantly lower proportion in the test versus the
training dataset (13% vs. 27%; p ¼ 0.002) (Table 2).
Again, features from the LVD predictive model
trained for diastolic abnormalities were unable to
discriminate (Supplemental Table 2). After repeated
feature selection, a model with 14 features produced
a sensitivity of 50% and a specificity of 90% (Table 4).
Features selected for inclusion in the model included
power spectrum and repolarization features as well as
1 depolarization-related feature that also occurred in
the LVD model (ARIC HF risk score was not selected)
(Supplemental Table 4). Ten out of the 14 features
were also chosen for the LVD model.

IMPACT OF ewECG ON A SCREENING PROCESS FOR

LVD. On the basis of greatest sensitivity for LVD
identification, the RF ewECG model without the ARIC
HF risk score was considered most optimal. Use of
this ewECG-based model to select people for echo-
cardiography could reduce the number of echocar-
diograms by 45% [(true negatives þ false negatives)/
total screened � 100]. However, 12% of cases of LVD
would be missed. Alternatively, the RF model incor-
porating ARIC score and ewECG would result in a 47%
reduction in echocardiograms but would miss 14% of
cases of LVD. In comparison, using the best of the
conventional methods, that is, ARIC HF risk
score $2.6, echocardiograms would be reduced by

https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020
https://doi.org/10.1016/j.jcmg.2021.04.020


TABLE 4 Performance of Random Forest Classifier Models for Predicting LV Dysfunction,

Low GLS Alone, and Diastolic Abnormalities

Training (n ¼ 287) Test (n ¼ 111)

Prediction target: LV dysfunction

Model components: ewECG features þ ARIC HF risk score

Sensitivity, % 67 85

Specificity, % 68 72

AUC (95% CI) 0.71 (0.64–0.77) 0.83 (0.74–0.92)

F-score 0.68 0.60

Model components: ewECG features

Sensitivity, % 66 88

Specificity, % 60 70

AUC (95% CI) 0.66 (0.59–0.72) 0.78 (0.67–0.88)

F-score 0.64 0.59

Prediction target: Low GLS

Sensitivity, % 35 57

Specificity, % 95 90

AUC (95% CI) 0.67 (0.58–0.76) 0.65 (0.37–0.93)

F-score 0.45 0.36

Prediction target: Diastolic abnormalities

Sensitivity, % 36 50

Specificity, % 94 90

AUC 95% (CI) 0.69 (0.62–0.76) 0.62 (0.42–0.82)

F-score 0.47 0.45

AUC ¼ area under the receiver-operating characteristic curve; CI ¼ confidence interval; other abbreviations as in
Tables 1 and 2.
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only 27% and 9% of LVD cases would be missed
(Central Illustration).

DISCUSSION

The application of signal processing (CWT) to a
conventionally acquired ECG signal provides a viable
screening test that can be integrated with echocar-
diographic screening for LVD. In our cohort of people
at risk for HF, our machine-learning RF algorithm
provided 88% sensitivity and 70% specificity for
detection of LVD, outperforming a clinical risk score,
biomarkers, and an established automated ECG
analysis algorithm. Furthermore, we highlighted that
CWT features required for identification of LVD
differed slightly according to LV abnormality, for
example, reduced systolic function or diastolic ab-
normality. The best-performing model was for pre-
diction of a composite measure of LVD. There was no
significant difference between a machine-learning
model that incorporated clinical information,
namely, the ARIC HF risk score, compared with
ewECG features alone. If implemented in combina-
tion with echocardiography as a screening test,
ewECG could reduce echocardiograms by 45% in
screening for LVD. This is important given the 82%
prevalence of subclinical HF in the community in
those >67 years of age (16). For the United States this
would mean that approximately 40 million people
would be eligible for screening and ewECG could
reduce the number of echocardiograms by around 18
million (17). Even if such a screening program did not
eventuate, ewECG may serve as a gatekeeper to the
echocardiography laboratory in high-risk but asymp-
tomatic individuals.

ECG AND MYOCARDIAL DYSFUNCTION. Structural and
metabolic cardiac pathology manifesting as electro-
cardiographic abnormalities is well accepted. How-
ever, abnormalities may be too subtle for either a
human reader or standard analytics to detect (9).
Accordingly, a recent study used artificial intelligence
(AI) (convolutional neural networks) applied to stan-
dard ECG digital data to predict LVD (defined as LV
ejection fraction #35%) with a sensitivity of 89%, a
specificity of 83%, and an AUC of 0.93 (18). Interest-
ingly, those with a false positive result were 4 times
as likely to develop LVD during 4-year follow-up,
suggesting that the AI could recognize early abnor-
malities. Another approach extracted advanced ECG
(A-ECG) parameters (3-dimensional ECG parameters,
QRS/T-wave complexity parameters) including vari-
ability analysis (5-min high-fidelity ECG recording) as
well as conventional ECG measures to devise a pre-
diction score for myocardial disease (19). The authors
demonstrated that a 5-parameter A-ECG score
(derived with the use of a feature selection technique
and logistic regression) had 83% sensitivity and 93%
specificity for LVD (LV ejection fraction <50%) in a
group of predominantly male subjects with either
CAD or LVH. Interestingly, none of the features used
in this score required an extended duration or high
sample rate recording and as such could be attained
from a conventionally recorded ECG. These works
and ours demonstrate a growing body of evidence
supporting the feasibility of electrocardiographic
identification of LVD.

CWT PROCESSING AND CARDIAC DISEASE.

Wavelet transforms have been applied to the ECG
signal for measurement of intervals, noise reduction,
and importantly identification of abnormalities (20).
One of the first applications was identification of
ventricular late potentials, microvoltage deflections
after (and sometimes within) the QRS complex that
are often obscured by noise (4,20). The detection of
ventricular late potentials with the use of CWT
improved prediction of post-infarction ventricular
arrhythmias from 52% to 72% and from 64% to 76%
for inferior and anterior infarctions, respectively,
compared with standard signal filtering (21). Wavelet
transforms have also revealed electric similarities



FIGURE 2 Performance of the Random Forest Classifier Model Utilizing ewECG Features for Prediction of Left Ventricular Dysfunction
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ARIC ¼ Atherosclerosis Risk in Communities; other abbreviations as in Figure 1.
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(abnormal frequency content) within the QRS com-
plex in congenital and acquired long QT syndrome,
providing insight into shared electropathophysiology
(22).

Although CWT-processed ECG has demonstrated
value by revealing known or suspected electric ab-
normalities, there are limited data on a direct asso-
ciation between CWT-processed ECG features and
cardiac function. Associations between standard ECG
features and cardiac dysfunction has focused on
long QT syndrome, which is associated with
increased isovolumetric relaxation time, altered tis-
sue Doppler velocity profiles, and mechanical
dispersion (23,24). Furthermore, the interval from T-
wave peak to T-wave end is increased in DD
assessed according to mitral inflow and tissue
Doppler velocities (7). At the molecular level, DD is
partly related to low-amplitude calcium transients
secondary to reduced calcium uptake into, and
leakage from, the sarcoplasmic reticulum (25,26).
Given that calcium is a key modulator of the action
potential duration, disturbances in the electric signal
on the surface ECG may be apparent in LVD. It fol-
lows that detailed decomposition of the ECG
signal from a diseased myocardium may reveal
characteristic abnormalities, and indeed, the
machine-learning model using only ewECG features
provided accurate detection of LVD. Recently, CWT-
processed ECG (as used in our study) has shown 80%
sensitivity and 84% specificity for abnormal relaxa-
tion, assessed by low e0 (AUC: 0.9) in a cohort of
patients presenting with symptoms of CAD (5). As in
our study, a machine-learning approach (RF classi-
fier) was used but with far more features (n ¼ 257)
because of different methodologies. Furthermore, in
a larger patient cohort with similar characteristics
(e.g., suspected CAD or indication for LV function
evaluation) (n ¼ 1,202), a machine-learning algo-
rithm was trained with ewECG features to quantita-
tively predict e0 (6). This algorithm was able to
discriminate guideline-defined thresholds with an
AUC of 0.84, and because the model generated a
continuous output for e0, inaccuracies associated
with age-based declines could be avoided. Although
we chose cutoffs, there is no suggestion that GLS
declines in normal aging (27), and our definition of
diastolic dysfunction would be inclusive of signs of
early disease before elevations in LA pressure. We
also think that our study population is the most
appropriate choice for testing and application of this
technology, that is, where echocardiography may
not be strictly indicated.



CENTRAL ILLUSTRATION Comparison of Strategies for LVD Screening
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The use of an echo screening strategy in all people with risk factors would identify almost 50% of the population as having LVD. A combination of clinical

scoring and NT-proBNP would reduce echocardiography by about one-third and miss few people with LVD. However, the use of ewECG would reduce the

need for echocardiography and miss even fewer patients with LVD. ARIC ¼ Atherosclerosis Risk in Communities; AUC ¼ area under the receiver-operating

characteristic curve; ECG ¼ electrocardiography; ewECG ¼ energy waveform ECG; HF ¼ heart failure; LVD ¼ left ventricular dysfunction; NT-

proBNP ¼ N-terminal pro–B-type natriuretic peptide.
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The benefit of our machine-learning method, as
opposed to an AI approach (e.g., neural networks), is
the potential for interrogation of the model to provide
mechanistic insight. We were interested to see
whether systolic dysfunction was exclusively
temporally associated with depolarization features,
which it was not. This may not be surprising for 2
reasons: 1) the surface ECG is a simplification of
electric activity spreading across the complex 3-
dimensional structure of the heart and body; and 2)
early LV systolic dysfunction and diastolic dysfunc-
tion often coexist (28,29). The predictive model for
diastolic abnormalities included measures from
depolarization as well as repolarization, and most of
the features within the low GLS and diastolic models
also appeared in the composite LVD model. Clearly,
investigation concerning the association between
LVD and specific CWT signatures is in its infancy and
is likely to be facilitated by machine-learning
algorithms.

SCREENING FOR LVD. The detection of subclinical
LVD fulfills some but not all criteria for screening
(30). On both the individual and the population
health levels, HF is burdensome, and its natural his-
tory involves an early asymptomatic stage that is
readily detected as abnormal GLS and DD, which carry
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risk of symptomatic HF and mortality (31–34), analo-
gous to standard markers of impaired LV function
(34,35). In terms of treatment, guideline-advocated
therapies (angiotensin-converting enzyme in-
hibitors, angiotensin receptor blockers, and beta-
blockers) significantly improve outcomes (36,37), not
only in populations with ischemic cardiomyopathy
with reduced ejection fraction, but also in subjects
with reduced GLS and diastolic abnormalities with
preserved ejection fraction, where intensification of
cardioprotective therapies may reduce progression to
symptomatic HF (38).

Although echocardiography is safe and accurate,
cost and access may be problematic. In this setting,
the high sensitivity of the ewECG cutoffs that we have
developed minimizes the number of patients going to
echocardiography, while at the same time minimizing
the numbers of false negatives who do not proceed.
The test is low risk and acceptable to patients. The
sensitivity of ewECG in our study is superior to the
fecal occult blood test for colorectal cancer screening,
although the specificity is lower (39). However, the
risks associated with further testing after a positive
ewECG (i.e., echocardiography) are far lower than for
colonoscopy, for example. Nonetheless, further work
with ewECG will need to include integration of
machine-learning algorithms into the device’s soft-
ware to enable immediate interpretation and guide
decision making and integration of ewECG into clin-
ical workflows.

The alternative is the use of natriuretic peptides
(NPs) (e.g., BNP $50 pg/ml) to guide therapy.
Intensification of renin-angiotensin-aldosterone
system inhibition and beta-blockade in diabetics
with NT-proBNP >125 pg/ml has been shown to
reduce cardiovascular hospitalizations compared
with usual care (relative risk: 0.52; 95% CI: 0.4 to
0.68) (40). However, although previous work has
shown that NP-based therapy reduces asymptomatic
LVD in individuals >40 years of age with cardio-
vascular risk factors (adjusted odds ratio: 0.6;
95% CI: 0.39 to 0.93), that study showed no sig-
nificant difference in HF hospitalization over the
4.2-year mean follow-up (41). Indeed, we found that
NT-proBNP had poor screening performance. An
inherent problem of BNP in this setting is that
levels are artefactually reduced in the setting of
obesity. Thus, the role of NT-proBNP in a screening
role in this population remains unclear.

STUDY LIMITATIONS. Machine-learning models are
inherently limited by the amount of data available to
train the algorithm. Continued acquisition of ewECG
data will continue to improve our models. We
demonstrated that models differ between targets;
performance for one cardiac abnormality in one
population should not be extrapolated to others. The
poor performance of ewECG for diastolic and early
systolic dysfunction abnormalities is likely due to the
small number of abnormal studies available for the
algorithm to train with, as well as the fact that the
over-represented group (in this case, normal studies)
is, by chance, more likely to be predicted. More
developmental work is needed to apply ewECG in
these settings. Our study is cross-sectional and
therefore we do not know what proportion will go on
to develop symptomatic HF or whether ewECG varies
between those who do or do not progress. Further-
more, it is unknown whether ewECG can reveal ab-
normalities before the onset of early LVD or in the
subset of patients who fail to exhibit resting echo-
cardiographic abnormalities before manifesting HF.

The definition of diastolic dysfunction used in this
paper is not conventional. We chose not to use the
standard criteria because many subjects are identified
as indeterminate. To create a definition suitable for
screening, we used clear criteria of raised LA pressure
(E/e0 with LAE), or if ambiguous (e.g., isolated LAE)
partnered that with another diastolic dysfunction
marker. Therefore there were 3 criteria: E/e0 >15, E/e0

>10 with LAE, and impaired relaxation and LAE.

CONCLUSION

Patients with subclinical LVD are at increased risk of
HF, which may be prevented by initiation of car-
dioprotective therapy. However, there is currently no
consensus as to whether (or how) subclinical LVD
should be detected. Advanced analysis of a routinely
acquired ECG using CWT signal processing and ma-
chine learning would be a suitably sensitive first step
in a selective echocardiographic screening process for
detection of LVD. Should such screening be adopted,
it could reduce the number undergoing echocardiog-
raphy by almost one-half.
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PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE: The

detection of LV dysfunction (LVD) by echocardiography in

asymptomatic people with risk factors for heart failure

(HF) identifies a group who are at increased risk of HF.

However, echocardiographic screening of the population

provides logistical and financial challenges. A selection

process for echocardiography would make detection

more feasible.

TRANSLATIONAL OUTLOOK: This study provides

data to support the use of “energy waveform” elec-

trocardiography (ewECG) to identify people at low risk.

This could reduce the need for echocardiography by

>50% while at the same time missing a minimal

number of patients with LVD. Further evaluation of

ewECG is warranted for selection of patients for

screening for LVD.
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