Akhil Vaid 1, Kipp W Johnson 2, Marcus A Badgeley 3, Sulaiman S Somani 4, Mesude Bicak 5, Isotta Landi 6, Adam Russak 7, Shan Zhao 8, Matthew A Levin 9, Robert S Freeman 10, Alexander W Charney 11, Atul Kukar 12, Bette Kim 13, Tatyana Danilov 14, Stamatios Lerakis 15, Edgar Argulian 16, Jagat Narula 17, Girish N Nadkarni 18, Benjamin S Glicksberg 19
Rapid evaluation of left and right ventricular function using deep learning (DL) on electrocardiograms (ECGs) can assist diagnostic workflow. However, DL tools to estimate right ventricular (RV) function do not exist, whereas those to estimate left ventricular (LV) function are restricted to quantification of very low LV function only.
This study sought to develop DL models capable of comprehensively quantifying left and right ventricular dysfunction from ECG data in a large, diverse population.
A multicenter study was conducted with data from 5 New York City hospitals: 4 for internal testing and 1 serving as external validation. We created novel DL models to classify left ventricular ejection fraction (LVEF) into categories derived from the latest universal definition of heart failure, estimate LVEF through regression, and predict a composite outcome of either RV systolic dysfunction or RV dilation.
We obtained echocardiogram LVEF estimates for 147,636 patients paired to 715,890 ECGs. We used natural language processing (NLP) to extract RV size and systolic function information from 404,502 echocardiogram reports paired to 761,510 ECGs for 148,227 patients. For LVEF classification in internal testing, area under curve (AUC) at detection of LVEF ≤40%, 40% < LVEF ≤50%, and LVEF >50% was 0.94 (95% CI: 0.94-0.94), 0.82 (95% CI: 0.81-0.83), and 0.89 (95% CI: 0.89-0.89), respectively. For external validation, these results were 0.94 (95% CI: 0.94-0.95), 0.73 (95% CI: 0.72-0.74), and 0.87 (95% CI: 0.87-0.88). For regression, the mean absolute error was 5.84% (95% CI: 5.82%-5.85%) for internal testing and 6.14% (95% CI: 6.13%-6.16%) in external validation. For prediction of the composite RV outcome, AUC was 0.84 (95% CI: 0.84-0.84) in both internal testing and external validation.
DL on ECG data can be used to create inexpensive screening, diagnostic, and predictive tools for both LV and RV dysfunction. Such tools may bridge the applicability of ECGs and echocardiography and enable prioritization of patients for further interventions for either sided failure progressing to biventricular disease.
HeartSciences’ AI-ECG products are currently in development and not commercially available in the United States.
wavECG and wavEKG are trademarks of HeartSciences.
MV-WBSTE-002 Rev A